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This paper reports the results of an analytical and numerical investigation to determine the effect of
internal heat generation on the onset of convection, in a differentially heated shallow fluid layer. The case
with the bottom plate at a temperature higher than the top plate mimics the classical Rayleigh Benard
convection. However, internal heat generation adds a new dimension to the problem. Linear stability
analysis is first carried out for the case of an infinitely wide cavity. The effect of aspect ratio on the onset
of convection is studied by solving the full Navier–Stokes equations and the equation of energy and
observing the temperature contours. A bisection algorithm is used for an accurate prediction of the onset.
The numerical results are used to plot the stability curves for eight different aspect ratios. A general cor-
relation is developed to determine the onset of convection in a differentially heated cavity for various
aspect ratios. For an aspect ratio of 10, it is seen that the cavity approaches the limit of an infinite cavity.
Analytical results obtained by using linear stability analysis agree very well with the ‘‘full” CFD simula-
tions, for the above aspect ratio.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Natural convection in a shallow horizontal fluid layer with inter-
nal heat generation is gaining immense interest in contemporary
heat transfer research, as it has a number of applications related to
atmospheric sciences, as for example, in convection from the earth’s
mantle, convection in the outer layer of sun and stars, as discussed
below. The convection in the earth’s atmosphere can be modeled
using the Rayleigh Benard convection as the temperature of the low-
er layers is higher than that of the upper layers. The heat transfer
from the clouds and the associated phase change due to the conden-
sation/evaporation of water vapor/liquid water and melting/freez-
ing of ice/liquid water can be modeled using internal heat
generation. The Meso scale Cellular Convection (MCC) is usually
considered as an atmospheric manifestation of Rayleigh Benard con-
vection (Agee et al. [1], Rothermel and Agee [2]). The prediction of
the stability of a fluid layer in the atmosphere is crucial for meteoro-
logical studies. Similarly, the study of convection in the earth’s man-
tle is important for geologists. The radiogenic heating together with
thermal convection provides the driving force for any convection
present in this stage of the Earth’s history (see for example Tozer
[3]). Nuclear fusion reaction causes volumetric heat generation in
stellar interiors. The study of convection in the stars helps in obtain-
ing information about the history of stars and various other
astronomical events (Bodenschatz et al. [4]). The study of stability
ll rights reserved.
in a confined fluid too has a lot of applications. The heat transfer rate
in the confined fluid can be increased by inducing flow. The cooling
of the forward section of missiles and reentry vehicles are enhanced
by induced flow. Stability analysis also finds applications in atomic
power plants where a high rate of heat transfer in confined fluids
is required.

A large number of investigations have been carried out on nat-
ural convection heat transfer that occurs in an enclosure due to a
temperature difference across the enclosure. Most of the early
investigations of this problem were based on the classical Rayleigh
Benard convection that occurs in a fluid layer which is confined be-
tween two thermally conducting plates, and is heated from below
to produce a fixed temperature difference (Fig. 1). Rayleigh Benard
convection was first studied analytically by Lord Rayleigh in 1916
in relation to the experiments made by Benard in 1900 [5].

The present study is concerned with determining the stability of
Rayleigh Benard convection with internal heat generation. Several
well established methods are available in literature to determine
the critical Rayleigh number for the onset of convection. The sim-
plest approach is to numerically simulate the convection in the
steady state starting with a Rayleigh number range across which
the transition occurs, and using a bisection algorithm to detect
the critical Rayleigh number. The onset of convection is obtained
by observing the temperature contours. In the conduction regime,
the temperature profiles are linear, while nonlinear temperature
profiles are obtained for convection. Xia and Murthy [6] used this
approach to investigate the flow transitions in deep three dimen-
sional cavities heated from below, a configuration similar to the
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Nomenclature

AR aspect ratio of cavity, L/H
Cp specific heat of fluid, J/kgK
g acceleration due to gravitational, 9.8 m/s2

H characteristic height of the domain, m
î unit vector in x direction
ĵ unit vector in y direction
k̂ unit vector in z direction
K wave number
k thermal conductivity, W/m K
L characteristic length of the domain, m
Nu Nusselt number, qw

ðTmax�TwÞ
H
k

Pr Prandtl number of fluid (air), m/ a

Ra external Rayleigh number, gbDTH3

ta

Rai internal Rayleigh number, gbq000H5

64tak
Ra* nondimensional heat generation, 64Rai

q’’’ heat generation per unit volume, W/m3

s growth rate
t time, s
T temperature of fluid, K

TC temperature of top plate, K
TH temperature of bottom plate, K
To reference temperature, K
Ti dimensionless temperature difference kDT

q000H2

U velocity vector
u velocity in x direction, m/s
v velocity in y direction, m/s
w velocity in z direction, m/s
W amplitude of velocity perturbation in the z direction, m/s

Greek symbols
a thermal diffusivity, m2/s
b coefficient of thermal expansion, 1/K
dij Kronecker’s delta
H amplitude of temperature perturbation
j wavenumber in x direction
k wavenumber in y direction
m kinematic viscosity, m2/s
q density of fluid, kg/m3

qo density of fluid at reference temperature, kg/m3
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Rayleigh Benard convection. Here, the critical Rayleigh number for
the onset of convection and the transition to turbulence were stud-
ied in tall cavities.

An extrapolation of the correlation between Nusselt number and
Rayleigh number obtained either using experiments or numerical
simulations to the conduction value of Nusselt number also yields
the critical Rayleigh number for the onset of convection. This meth-
od gives a crude approximation and can be used only for one param-
eter problems. Kulacki and Goldstein [7] studied, experimentally,
thermal convection in a horizontal fluid layer with uniform volu-
metric energy sources and the results were extrapolated to obtain
the critical Rayleigh number for the onset of convection.

Linear stability analysis is another method dealt with in good de-
tail in literature ([8,9]). In linear stability analysis, the effects of small
disturbances on the system are studied. The system is said to be sta-
ble if the disturbances die out in time. The nonlinear terms in the
governing equations are neglected as they are insignificant during
the onset. The linearized conservation equations for the disturbance
quantities are solved using suitable numerical techniques to deter-
mine the critical Rayleigh number for the onset of convection. Pellew
and Southwell [10] were the first to present a rigorous proof for the
principle of exchange of stability. The critical Rayleigh number for
the onset of Rayleigh Benard convection was established as 1708
for the rigid–rigid configuration. Ostrach and Pnueli [11] describe
a method to obtain upper bounds to the instability criterion for some
particular configurations. Roberts [12] carried out a linear stability
analysis for the onset of convection in a horizontal fluid layer with
the bottom and top plates at the same temperature and with only
Fig. 1. Schematic of Raylei
internal heat generation driving the convection. Tasaka and Takeda
[13] studied the effects of internal heat generation with bottom wall
heating on natural convection in cavities using linear stability
analysis.

If the disturbances are of sufficient magnitude, the nonlinear
terms in the disturbance quantities must be retained in the conser-
vation equation describing the altered fluid motion. The deduction
of the critical Rayleigh number based on the complete nonlinear
equations is known as energy theory [14] and will give a stability
criterion which is usually more restrictive than that of the linear
theory. Fusegi et al. [15] considered a square cavity with differen-
tially heated walls, along with volumetric heat generation, using
numerical methods. They defined two Rayleigh numbers: one
based on the temperature difference between the walls, and the
other based on heat sources in the cavity. The basic interest of
the study was to determine the effect of these Rayleigh numbers
on the flow field.

From the review of literature presented above, it is seen that Ray-
leigh Benard convection and its applications have been extensively
documented. The fundamental principles required for linear stabil-
ity analysis of Rayleigh Benard convection are also well established.
Numerical and experimental studies on convection in a fluid layer
with only internal heat generation are also available in literature.
The linear stability analysis for the onset of convection in fluid layer
with internal heat generation has also been discussed in literature.
Even so, scarce are studies that address the effect of internal heat
generation on the onset of Rayleigh Benard convection in spite of
its potential applications in several problems in science and engi-
gh Benard convection.
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neering. Furthermore, from a fundamental standpoint, it would be
interesting to see at what aspect ratio, the cavity starts behaving like
an infinite cavity for which a simple linear stability analysis to deter-
mine the onset of convection would suffice.
2. Methodology

The geometry and the boundary conditions for the problem un-
der consideration are shown in Fig. 2. The bottom and top plates
are isothermal with the bottom plate at a higher temperature
and the side walls are adiabatic. The fluid layer is given a uniform
volumetric internal heat generation. The aspect ratio of the cavity
is defined as the ratio of the horizontal dimension to the vertical
dimension. The cavity is infinitely deep in the plane perpendicular
to the paper.

2.1. Methodology for linear stability analysis

The onset of convection is studied analytically using linear
stability analysis for an infinitely wide cavity. The behavior of the
system for a given perturbation is studied to determine the stabil-
ity of the system. The equations of the system in the perturbed
state are obtained as given below. The terms involving the prod-
ucts of perturbations are neglected.

r � u0 ¼ 0 ð1Þ
@u0

@t
¼ �rP0

q0
þ mr2u0 þ gbT 0 ð2Þ

@T 0

@t
þ u0 � rT ¼ ar2T 0 ð3Þ

The above equations are made dimensionless and are manipulated
to obtain the perturbation equation. Here, the domain is infinite in
the x and y directions making the problem essentially one dimen-
sional in the z direction

r � ~w0 ¼ 0 ð4Þ
@

@~t
ðr2 ~w0Þ ¼ Ra�Prr2

Hh0 þ Prr4 ~w0 ð5Þ

here Ra* = 64Rai

@h0

@~t
þw0

@h0

@~z
¼ r2h0 ð6Þ

Eliminating h0, the perturbation equation in ~w0 is obtained as given
below

@

@~t
r2 � Prr4

� �
@

@~t
�r2

� �
~w0 ¼ � @h

@~z
Ra�Prr2

H
~w0 ð7Þ
Fig. 2. Problem geometry an
The above expression gives the perturbation equation in ~w0: The
perturbations given are of the form as given below,

~w0 ¼WeiðjxþkyÞþst and h0 ¼ HeiðjxþkyÞþst ð8Þ

Substituting the perturbation in Eq. (7) and simplifying, a sixth or-
der ordinary differential equation is obtained.

ðD2 � K2ÞðD2 � K2 � sÞ D2 � K2 � s
Pr

� �
W ¼ Ra�K2WD�h ð9Þ

In the above equation D is the differential operator D ¼ @
@�z and

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

p
is the wave number. Following [8], ‘‘s” is real for all po-

sitive Rayleigh numbers (i.e. for all adverse temperature gradients); it
follows that the transition from stability to instability must occur via
a stationary state. The equation governing the marginal stability is
obtained by setting s = 0 in the above equation.

ðD2 � K2Þ3W ¼ Ra�K2WD�h ð10Þ

D�h is obtained from the temperature profile in the base ð�hÞ state, by
solving the energy equation with boundary conditions.

When the bottom plate is at higher temperature compared to
the top plate,

D�h ¼ 1
2
� Ti � ~z

� �
ð11Þ

When the top plate is at higher temperature compared to the bot-
tom plate,

D�h ¼ 1
2
þ Ti � ~z

� �
ð12Þ

Where Ti ¼
kDT

q000H2 ð13Þ
2.1.1. Boundary conditions
The equation to be solved is a sixth order differential equation

and hence requires six boundary conditions. Here, both the bound-
aries considered are rigid. For the rigid–rigid configuration, the
boundary conditions are as explained below:

The fluid is confined between two planes which are maintained
at constant temperature giving h0 = 0 and ~w ¼ 0 for ~z ¼ 0, and 1.

The no-slip condition on a rigid boundary ~z ¼ 0 and ~z ¼ 1 im-
plies ~u ¼ ~v ¼ ~w ¼ 0; at both the boundaries and hence it follows
from the equation of continuity equation that @ ~w

@~z ¼ 0:
Using the boundary condition h0 = 0 we obtain

ðD2 � K2Þ D2 � K2 � s
Pr

� �
W ¼ 0 ð14Þ

The six boundary conditions for the problem in the case of marginal
stability analysis i.e. s = 0 are as given,
d boundary conditions.
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W ¼ DW ¼ ðD2 � K2Þ2W ¼ 0 at ~z ¼ 0;1 ð15Þ

In Eq. (10), only for a particular value of Ra* for a given K2 will the
problem allow non zero solutions. Thus, the problem is a character-
istic value problem for Ra*. For a given K2, the lowest characteristic
value for Ra* is to be determined, the minimum of all the Ra* thus
obtained is the critical Ra* at which the instability manifests itself.

2.1.2. Solution scheme
The shooting method is used for solving the sixth order differ-

ential eigen value problem given in Eq. (10) for a particular K.
The details of the method are presented in Chapra and Canale
[16]. The solution of six first order equations requires six initial
conditions and an extra equation for Ra*. The extra equation for
Ra* is obtained from the fact that Ra* is independent of ~z

@Ra�

@~z
¼ 0 ð16Þ

A fourth order Runge Kutta scheme is used to integrate the equa-
tions from ~z ¼ 0 to ~z ¼ 1. Three of the six end conditions are known
at the boundary ~z ¼ 1. The end conditions are checked and the ini-
tial guess for the boundary conditions and value of Ra* are corrected
using the Newton Raphson method of solving non-linear simulta-
neous equations until convergence is obtained within permissible
error.

The above procedure is repeated for other values of K and one
can obtain a plot of Ra* v/s K and the minimum value of Ra* gives
the critical Ra* for that particular Ti. The procedure is repeated
for various values of Ti to obtain the stability curve of Rayleigh
Benard convection with internal heat generation of an infinite as-
pect ratio. To be consistent with literature, plots of Rai v/s K are
drawn using the relation Ra* = 64Rai.

2.2. Methodology for the ‘‘full” numerical (CFD) analysis

Convection in a fluid layer heated from below and with internal
heat generation is analyzed numerically using the commercially
available FLUENT 6.3. The bottom and top plate are isothermal
and the side walls are adiabatic. The fluid layer is given a uniform
volumetric internal heat generation. The Boussinesq approxima-
tion is assumed to hold good. For the above conditions, the govern-
ing equations for mass, momentum and energy for a steady, 2-D,
laminar, incompressible flow with the Boussinesq approximation
are

@u
@x
þ @w
@z
¼ 0 ð17Þ

u
@u
@x
þw

@u
@z
¼ � 1

q0

@P
@x
þ mr2u ð18Þ

u
@w
@x
þw

@w
@z
¼ � 1

q0

@P
@z
þ mr2wþ gbðT � T0Þ ð19Þ

u
@T
@x
þw

@T
@z
¼ ar2T þ q000

q0Cp
ð20Þ
1700 1720 1740 1760 1780 1800 1820 1840 1860 1880
2.5

3
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e

Fig. 3. Stability plot for Rayleigh Benard convection without internal heat
generation.
2.2.1. Solution scheme
First a suitable grid pattern is chosen and meshing is done. All

properties are calculated at the mean temperature and Boussinesq
approximation is used for modeling the natural convection flow.
The bottom and top wall are given isothermal boundary condi-
tions, the side walls are kept adiabatic and a uniform internal heat
generation is given as a source term in the fluid zone. The SIMPLE
algorithm is used for the pressure velocity coupling. A first order
upwind scheme is used for both the momentum and energy equa-
tions. The solution is considered converged if the residuals for the
continuity, x and y momentum equations are less than 1 � 10�8

and less than1 � 10�10 for the energy equation.
The shape of the temperature contours is used to determine the

onset of convection. When Ra is lower than Rac (i.e. critical
Rayleigh number), the temperature contours are parallel to the
horizontal dimension. For Ra > Rac, the temperature contours
depart from the linear profile quite substantially. Thus, the
Rayleigh number was changed in small steps by changing the tem-
perature difference or by changing the internal heat generation un-
til convection is observed. To obtain accurate results, the bisection
algorithm is used to improve the guess. The above method is used
to predict the Rac with an accuracy of ±10.

The problem is basically a two parameter one with the two
parameters being Ra and Rai (the Rayleigh number based on tem-
perature difference and internal heat generation, respectively).
The objective of the study is to determine the critical values of
the pair (Ra, Rai) for which the onset of convection occurs. Here,
for each aspect ratio, the critical Ra (Racr) is determined by keeping
Rai constant and vice versa. While infinite combinations of Ra and
Rai are possible for each aspect ratio, due to computational limita-
tions, we limit our study to obtain five sets of critical values of the
pair (Ra, Rai) for each aspect ratio. Two sets of Rac are obtained at
Ra = 0 and Rai = 0 by varying Rai and Ra, respectively, and the other
three were obtained by keeping Ra as constant and by varying the
internal heat generation. The study was done for eight different as-
pect ratios 1, 2, 3, 4, 5, 6, 8 and 10. A total of 40 pairs of Rac were
thus obtained. The important non dimensional numbers in the
study are (1) Rayleigh number, Ra given by gbDTH3

ta and (2) the inter-
nal Rayleigh number, Rai given by gbq000H5

64tak :

3. Validation

3.1. Validation of the linear stability analysis code

The Rayleigh number for the onset of convection in Rayleigh Be-
nard convection is available in literature, as a number of experi-
mental and analytical studies have already been done as already
mentioned. Here, the onset of convection between two infinite par-
allel plates at a constant temperature with the bottom plate at a
higher temperature compared to the top plate is studied. The linear
stability code developed for this study was first validated using the
onset of convection for Rayleigh Benard convection. The equation
to be solved and the boundary conditions are given in Eqs. (10)



Fig. 5. Schematic of the experimental setup used by Kulacki and Goldstein [7].
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and (15), respectively. The stability plot for Rayleigh Benard con-
vection is given in Fig. 3.

The critical Rayleigh number for Rayleigh Benard convection is
obtained as 1708 using linear stability analysis and the value ex-
actly matches with the values available in the literature see, for
example Pellew and Southwell [10]. The code is also validated
for case of convection with only heat generation. In this configura-
tion, the two infinitely long parallel isothermal plates are kept at
the same temperature. The confined fluid is given a uniform inter-
nal heat generation. The Rai obtained from linear stability analysis
is 583.1, as shown in the Fig. 4. The results again match very well
with the values reported by Kulacki et al. [14]. Thus, the formula-
tion and the code for linear stability analysis were found to be
working satisfactorily. The code is now used to obtain the onset
of convection for cases in which both temperature difference and
internal heat generation act together as driving forces.

3.2. Validation of the full numerical (CFD) model

To validate the model, the results of the present study for thermal
convection in a horizontal fluid layer with internal heat generation
are compared with experimental results available in literature.
The details of the experimental study by Kulacki and Goldstein [7]
on thermal convection in a horizontal fluid layer with uniform volu-
metric heat generation are shown in Fig. 5. Joule heating by an alter-
nating current passing horizontally through the layer produced the
required volumetric heat generation. Experiments were conducted
in the Rayleigh number (Rai), range 196–105, where Rai is defined
as gbH5q000

64amk : Kulacki and Goldstein developed two correlations for the
Nusselt number given by,

Nu ¼ 0:879Ra0:236 for the upper plate ð21Þ
Nu ¼ 2:11Ra0:094 for the lower plate ð22Þ

In the present study, simulations are carried out by varying the Ray-
leigh number in the range 1500–378500. The bottom and top plates
are given a uniform temperature of 300 K and the side walls are
maintained adiabatic. A uniform internal heat generation is given
in the fluid domain. No-slip conditions are imposed on all the walls.
A plot of the average Nusselt number with the Rayleigh number is
given in Fig. 6.
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Fig. 4. Results for the onset of convection in a cavity with only internal heat
generation.
The values of the average Nusselt number from the numerical
simulations are found to match the experimental observations of
[7] very well, with the average error being less than 10%. It is seen
that when the Rayleigh number is increased, the Nusselt number at
the top plate is almost twice that in the bottom plate. The fraction
of energy transported to the upper boundary (FH) is defined as

FH ¼ Nutop

NutopþNubottom
, and the results are shown in Fig. 7. It is found that

above a Rayleigh number of 105, about 70% of the internal heat
generated is transported to the upper wall.

The spatially averaged temperature distribution (averaged in
the horizontal dimension of the cavity) is shown in Fig. 8. A num-
ber of distinct features of low and high Rayleigh number convec-
tion are identifiable from the temperature profiles. For Rayleigh
numbers less than 600, the mode of heat transfer is only conduc-
tion and the temperature profile is parabolic and symmetric about
the mid plane. When the Rayleigh number is increased further, the
temperature profile becomes asymmetric as convection sets in. In
general, at higher Rayleigh numbers the overall buoyancy force
acting on the warm central core of the fluid layer displaces this re-
gion upwards and above the geometric centre of the layer, making
the overall temperature profile asymmetric. The asymmetric nat-
ure of the temperature profile further increases, as the Rayleigh
number is increased.

The slope of the temperature profile near the top wall is almost
twice the slope near the bottom wall, thus corroborating our ear-
lier findings that the energy transported to the top wall is almost
twice the energy transported to the bottom wall. It is found that,
in general, CFD simulations match the experimental observation
quite satisfactorily. A parabolic temperature profile is obtained in
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Table 1
Onset study using linear stability analysis.

Sl No. Ti K Rai Ra

1 0 4 583.1 0
2 0.01 3.9 524.3 335.5
3 0.02 3.8 472.1 604.288
4 0.04 3.6 385.1 985.856
5 0.06 3.45 318.3 1222.272
6 0.08 3.4 267.5 1369.6
7 0.1 3.3 228.6 1463.04
8 0.2 3.2 127.6 1633.28
9 0.4 3.15 65.94 1688.064

10 1 3.1 26.63 1704.32
11 10 3.1 2.668 1707.52
12 100 3.1 0.2668 1707.63
13 1000 3.1 0.02668 1707.75
14 RBCa 3.1 0 1708

a RBC, Rayleigh Benard convection.
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the conduction regime, which is expected for heat transfer in a
fluid layer with internal heat generation. The contours of temper-
ature are parallel to the horizontal dimension in the conduction re-
gime but rolls starts to form as convection set in. Thus, the onset of
convection can be studied by observing the temperature contours
obtained directly from steady state simulations.

4. Results and discussion

4.1. Linear stability analysis

In the present study, the critical Rayleigh numbers are calcu-
lated by solving the sixth order differential equation described in
Eq. (10), for different values of Ti using the shooting method. The
calculations are done for Ti varying from 0 to 1000. Here, the bot-
tom plate is kept at a higher temperature compared to the top
plate and this resembles the classical Rayleigh Benard convection.
Fig. 9 shows a plot of Ra* versus K for Ti = 1 as an example. The prin-
ciple of exchange of stability is assumed to hold good and so here
the marginal stability analysis is carried out at s = 0, as already
mentioned. The stability curve for Rayleigh Benard convection
(Ti =1) and convection in fluid layer with only heat generation
(Ti = 0) were already discussed (Figs. 3 and 4). The results obtained
from the stability analysis are in terms of Rai and Ti, while the CFD
results are in the terms of Ra and Rai. To facilitate comparison with
CFD results, the analytical results are recalculated in terms of Ra
and Rai and are given in Table 1.
The stability curve for an infinitely long cavity obtained from
the linear stability analysis is presented in Fig. 10. The region in
the plot below the curve is stable with only conduction; convection
is present for regions above the curve. From the study, it is clear
that internal heat generation aids the onset of convection. The
curve is highly steep near Ra = 1708, the critical value for the onset
of Rayleigh Benard convection. It is clear that for very high Ra, heat
generation plays an insignificant role on the onset and the effect of
internal heat generation is more pronounced for low Ra (external
Rayleigh number).
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For the problem under consideration the equation of the stabil-
ity curve is derived to be

Ra
1708

þ Rai

583:1

� �2

� 1 ¼ 0 ð23Þ

The above equation can be used to determine the onset of Rayleigh
Benard convection for an infinitely wide horizontal cavity with heat
generation. The fluid layer will have only conduction for all pairs of

Ra and Rai for which Ra
1708þ

Rai
583:1

� �2
� 1; else there will be convection

in the fluid layer. The parity plot obtained for Racr and Raicr obtained
using the above equation is shown in Fig. 11.

4.2. Results of full numerical simulations (CFD)

4.2.1. Grid independence study
A grid independence study has been carried out for an aspect ra-

tio of 10 which is the worst case possible from the point of view of
grid dependence. The Rayleigh number for the simulation was
selected as (Ra = 3800). The geometry and the boundary conditions
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Fig. 11. Parity plot highlighting the goodness of fit of Eq. (23).
are given in Fig. 2. The average Nusselt number obtained for
various grid patterns are shown in Fig. 12. The difference in the
average Nusselt number obtained using 12000 cells and with that
obtained by using 9000 cells is less than 0.5%. Here, a grid with
9000 cells with uniform spacing in the x and z directions is selected
for further simulations.

4.2.2. Onset of convection for various aspect ratios
Numerical simulations are carried out for laminar Rayleigh

Benard convection with internal heat generation spanning eight
different aspect ratios (1, 2, 3, 4, 5, 6, 8, and 10) to obtain the crit-
ical Rayleigh number for the onset of convection. The onset of con-
vection is studied primarily by observing the temperature contours
obtained from steady state simulations, as already discussed. For
each aspect ratio, five pairs of (Ra, Rai) are obtained. Each pair of
(Ra, Rai) is obtained by running steady state simulations starting
with the Rayleigh number range across which transition occurs
and using the bisection algorithm to detect the critical Rayleigh
numbers by observing the temperature contours. It is also ob-
served that during the onset of convection, the magnitude of veloc-
ity is higher by an order of magnitude and rolls are present in the
fluid layer compared to a fluid layer with only conduction. Roughly
three hundred simulations were carried out to obtain 40 pairs of
(Ra, Rai). The results of the stability analysis for (i) Rayleigh Benard
convection (ii) convection in a fluid layer with only heat generation
and (iii) Rayleigh Benard convection with internal heat generation
are discussed below. The main focus of the CFD analysis here is the
effect of aspect ratio on the onset of convection.

4.2.2.1. Stability analysis for ‘‘plain” Rayleigh Benard convection. The
critical Rayleigh number for the onset of convection is obtained by
examining the temperature contours. The effect of aspect ratio on
the onset of convection is given in Fig. 13. The critical Rayleigh num-
ber approaches the value of 1708 as the aspect ratio is increased
beyond 8 confirming with the values available in literature. The
critical Ra decreases with the increase in aspect ratio as the effect
of side wall effect becomes less significant at higher aspect ratios.
In general, the side wall creates a resistance to the convection flow
as boundary layers are formed near the side walls. The no-slip con-
dition near the side wall causes hindrance to the flow and the viscous
forces increase resulting in a higher critical Rayleigh number for the
onset of convection. It is clear from the study that the effects of side
wall are negligible as the aspect ratio is increased beyond 8.
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The correlation for critical Rayleigh number for aspect ratios
(AR) varying from 1 to 15 is obtained from the study using
regression

Racr

1708
¼ 0:469

AR2 þ
0:0627

AR
þ 1 ð24Þ

Here Racr is the critical external Rayleigh number for the onset of
convection for Rayleigh Benard convection. The form of the above
equation is so chosen that Racr tends to 1708 as AR ?1. Eq. (24)
has an R2 value of 0.99 and an RMS error of ±6.24. A parity plot dem-
onstrating the goodness of the fit can be seen in Fig. 14.

4.2.2.2. Stability analysis for convection in fluid layers with only heat
generation. The critical Rayleigh number (Rai) varies from 756 for
an aspect ratio of 1 to 563 for an aspect ratio of 10. The variation
of Rai with aspect ratio is shown in Fig. 15. The trend shown is sim-
ilar to that seen for the ‘‘plain” Rayleigh Benard convection. The
side walls have a noticeable effect for small aspect ratios. However,
this becomes imperceptible above an aspect ratio of 8. The critical
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Fig. 14. Parity plot highlighting the goodness of fit of Eq. (24).
Rai obtained for aspect ratio of 10 agrees well with the results of
the analytical study, where a cavity of infinite aspect ratio is con-
sidered. A correlation for the critical Rayleigh number for aspect
ratios (AR) varying from 1 to 15 is obtained from the study as

Raicr

583:1
¼ 0:265

AR2 þ
0:097

AR
þ 1 ð25Þ

Here Raicr is the critical internal Rayleigh number for the onset of
convection in a horizontal fluid layer with only heat generation
with both the bottom and top plates being kept at the same temper-
ature. Eq. (25) has a R2 value of 0.99 and an RMS error of ±4.35. A
parity plot, shown in Fig. 16 shows the excellent agreement be-
tween the data and the predictions.

4.2.2.3. Stability analysis for Rayleigh Benard convection with heat
generation. The stability curves of Rayleigh Benard convection with
internal heat generation for different aspect ratios are shown in
Fig. 17. The region below each curve shows the stable region for
that particular aspect ratio. The critical Rayleigh numbers for the
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Fig. 16. Parity plot highlighting the goodness of fit of Eq. (25).
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onset of convection decrease as the aspect ratio is increased be-
cause the effect of the side wall reduces as the aspect ratio is in-
creased. The variation of critical Rayleigh numbers for aspect
ratios 6, 8 and 10 are insignificant.

A general correlation applicable for all aspect ratios and for all
the three physical scenarios considered in this paper has been
developed based on 40 data spanning the range of aspect ratios
varying from 1 to 10 and is given below.

Ra
Racr
þ Rai

Raicr

� �2

� 1 ¼ 0 ð26Þ

Where Racr and Raicr are given by Eqs. (24) and (25), respectively.
Using Eqs. (24)–(26), the stability curve for any aspect ratio varying
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Fig. 18. Parity plot highlighting the goodness of fit of Eq. (26) for Racr.
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Fig. 19. Parity plot highlighting the goodness of fit of Eq. (26) for Raicr.
from 1 to 10 can be obtained. The parity plot obtained for Racr and
Raicr obtained using the above equations are shown in Figs. 18 and
19, respectively. Eq. (26) reduces to Eq. (23) for the case of AR ?1,
thus corroborating its asymptotic correctness.

5. Comparison of CFD and analytical results

The stability curve for the onset of convection obtained from
both CFD analysis (AR = 10) and the linear stability analysis (for
infinite domain) agree very well with each other as seen in
Fig. 20. The maximum difference is less than 3%. It can now be con-
cluded that a closed cavity of aspect ratio 10 simulates two infinite
parallel plates quite satisfactorily for the given problem. Therefore,
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one may choose to work on AR = 10 for conducting any further
studies on laminar Rayleigh Benard convection with internal heat
generation to reduce the computational effort.

6. Conclusions

Numerical investigations were carried out for two dimensional,
laminar Rayleigh Benard convection, with internal heat generation
spanning eight different aspect ratios, to obtain the critical Ray-
leigh number for the onset of convection. The onset for an infinitely
long cavity was determined using linear stability analysis and the
following conclusions were arrived at:

1. In general internal heat generation aids the onset of convection.
2. The critical Rayleigh number for the onset of convection

decreases with the increase in aspect ratio as the influence of
the side wall decreases as the aspect ratio is increased as
expected.
3. From the stability curves drawn for various aspect ratios and for
AR = 10, it is seen that the cavity approaches the limit of an infi-
nite cavity at this aspect ratio, for which analytical results
obtained by using linear stability analysis agree very well with
the ‘‘full” CFD simulations.

4. A comprehensive yet simple correlation to determine the onset
of convection when both temperature difference and volumet-
ric heat generation are present, valid for a wide range of aspect
ratios has been proposed. The asymptotic correctness of the
correlation has also been verified.

References

[1] E.M. Agee, T.S. Chen, K.E. Dowell, A review of mesoscale cellular convection,
Bull. Am. Meteorol. Soc. 54 (1973) 1004–1012.

[2] Jefrey Rothermel, Ernset M. Agee, A numerical study on atmospheric scaling,
J. Atmos. Sci. 43 (1986) 1185–1197.

[3] D.C. Tozer, Heat transfer and convection currents, Proc. Roy. Soc. Lond. A, Math.
Phys. Sci. 258 (1965) 252–270.

[4] Eberhard Bodenschatz, Werner Pesch, Guenter Ahlers, Recent Developments in
Rayleigh–Benard Convection, Ann. Rev. Fluid Mech. 32 (2003) 709–778.

[5] A. Bejan, Convection Heat Transfer, John Wiley and Sons, New York, 1993.
[6] Chunmei Xia, Jayathi Y. Murthy, Buoyancy-driven flow transitions in

deep cavities heated from below, ASME J. Heat Transfer 124 (2002)
650–659.

[7] F.A. Kulacki, R.J. Goldstein, Thermal convection in fluid layer with uniform
volumetric energy sources, J. Fluid Mech. 55 (1972) 271–284.

[8] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendon
Press, Oxford, 1961.

[9] P.G. Drazin, W.H. Reid, Hydrodynamic Stability, Cambridge University Press,
2004.

[10] Anne Pellew, R.V. Southwell, On maintained convective motion in a fluid
heated from below, Proc. Roy. Soc. Lond. A, Math. Phys. Sci. 176 (1940) 312–
343.

[11] S. Ostrach, D. Pnueli, The thermal instability of a completely confined fluids
inside some particular configuration, ASME J. Heat Transfer 64 (1963) 346–
352.

[12] P.H. Roberts, Convection in horizontal fluid layers with internal heat
generation Theory, J. Fluid Mech. 30 (1967) 33–49.

[13] Tasaka Yuji, Takeda Yasushi, Effects of heat source distribution on natural
convection induced by internal heating, Int. J. Heat Mass Transfer 48 (2005)
1164–1174.

[14] F.A. Kulacki, R.J. Goldstein, Hydrodynamic instability in fluid layers with
uniform volumetric energy sources, Appl. Sci. Res. 31 (1975) 81–109.

[15] T. Fusegi, J.M. Hyun, K. Kuwara, Natural Convection in a Differentially Heated
Cavity With Internal Heat Generation, Numer. Heat Transfer A 21 (1992) 215–
229.

[16] Chapra Steven, Canale Raymond, Numerical Methods for Engineers, Mc Graw
Hill, New York, 2006.


	On the onset of natural convection in differentially heated shallow fluid layers  with internal heat generation
	Introduction
	Methodology
	Methodology for linear stability analysis
	Boundary conditions
	Solution scheme

	Methodology for the “full” numerical (CFD) analysis
	Solution scheme


	Validation
	Validation of the linear stability analysis code
	Validation of the full numerical (CFD) model

	Results and discussion
	Linear stability analysis
	Results of full numerical simulations (CFD)
	Grid independence study
	Onset of convection for various aspect ratios
	Stability analysis for “plain” Rayleigh Benard convection
	Stability analysis for convection in fluid layers with only heat generation
	Stability analysis for Rayleigh Benard convection with heat generation



	Comparison of CFD and analytical results
	Conclusions
	References


